Series 10P Actuator For A/C Modulating Service

Installation, Operation and Maintenance Manual
Table of Contents

DHC-100 Introduction .. 3
 FEATURES .. 3
Series 10 Electric Actuator Introduction .. 4
 Description .. 4
 Electrical Requirement .. 4
Installation ... 5
 Electrical ... 5
 Actuator Mounting Dimensions ... 6
Operation ... 7
 Manual Override Operation .. 7
 Mechanical Travel Stop .. 7
 Setting Limit Switches ... 7
 Torque Switch Adjustment ... 7
 Calibration .. 8
 QuickCal Procedure .. 9
 Aux Open/Close Option Setup .. 10
 Aux Position Option Setup ... 10
Option Modules .. 19
 Series 10 Options Codes for Serial # Tags ... 20
Specifications .. 20
 DHC-100 Specs .. 20
 Series 10 Specs .. 21
Troubleshooting ... 22
Maintenance .. 25
DHC-100 Introduction

The DHC-100 is a high performance digital positioner intended to control AC actuators, providing 450 points of resolution with quarter turn actuators ranging from 2 sec to 120 sec and rated for 25% duty or more. The DHC-100 has many automatic advanced features that will enhance any actuator while making it easy to install and set up.

The simple three button control is used to configure all parameters the unit needs for a wide variety of applications, and allows the open and closed positions to be easily set for direct or reversing acting without any rewiring. The unit can be configured for various command types (4-20mA, 1-5V, 0-5V, 0-10V, or a digital command) and its default operation upon loss of command.

Various option modules are easily plugged into the unit, providing other features such as a position feedback signal (current or voltage), auxiliary switches, fault relay contact, or digital communications. A wide range of data is accessible through a digital communications module, providing additional control or information.

The unit is of single solid construction and is easily mounted with two screws. The DHC-100 is interchangeable with the AMC and LRC standard size controllers, and can be used to upgrade performance for those applications.

FEATURES

- Positions to ±0.1° with quarter-turn actuators ranging from 2 sec to 90 sec.
- Three button control provides easy setup and eliminates the need for instrumentation.
- Polarity Detection feature allows direct or reverse acting operation without re-wiring.
- Electronic Brake feature can eliminate need for a mechanical brake in many applications, and extends mechanical brake life when used.
- Stall Detection feature protects actuator motor from a stall condition.
- Automatic Duty Cycle Control feature prevents shutdown of a process due to a thermal overload of the actuator motor, and allows actuators rated for 25% duty or more to be safely used.
- Operating temperature range of 0 to 60°C
Series 10P Electric Actuator Introduction

Description
The Series 10P electric actuators feature a reversing, capacitor run squirrel caged induction motor, with a permanently lubricated gear train, and hardened gears. These actuators are equipped with integral thermal overload protection (AC models) with automatic reset, independently adjustable travel limit switches, auxiliary switches (synchronized with travel limit switches), torque switches, heater, lockable declutchable manual override, visual position indication, fully anodized enclosure with thermally bonded powder coat finish, stainless steel trim, ISO bolt circle, and 2 (two) 3/4” NPT conduit entries.

Standard models are offered in 120 VAC, and feature a combination enclosure of Nema-4X & 6, and provide up to 25,900 in-lbs. of output torque.

Various options are available such as operating voltages, positioners, transmitters, feedback potentiometers, etc.

CAUTION: Actuator MUST NOT be lifted or carried by the handwheel.

Electrical Requirement

CAUTION: Proper voltage must be supplied to actuator or damage will result.

CAUTION: If 120vac & 230vac models are PLC driven, output contacts of PLC should be rated at a minimum of 1.5 times required input voltage of actuator.

NOTE: To conform to various electrical codes, a green grounding lug is a standard feature and located on the terminal strip inside of the enclosure.

Terminal Strip Wiring: 75° C Copper Supply Wires up to #14 AWG, wired as per the attached diagrams or the wiring diagram located inside of actuator cover. Control Wiring shall be insulated with conductors rated 105° C, 300V minimum.

<table>
<thead>
<tr>
<th>Model</th>
<th>Torque (in/lbs)</th>
<th>110/1 Vac</th>
<th>220/1 Vac</th>
<th>Cycle time Per 90 degrees (Seconds)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Amp Draw</td>
<td>Duty Cycle</td>
<td>Amp Draw</td>
<td>Duty Cycle</td>
<td></td>
</tr>
<tr>
<td>10-015P</td>
<td>1350</td>
<td>2.5</td>
<td>70</td>
<td>1.2</td>
<td>35</td>
</tr>
<tr>
<td>10-020P</td>
<td>1700</td>
<td>2.5</td>
<td>70</td>
<td>1.2</td>
<td>35</td>
</tr>
<tr>
<td>10-030P</td>
<td>2640</td>
<td>2.9</td>
<td>70</td>
<td>1.4</td>
<td>40</td>
</tr>
<tr>
<td>10-050P</td>
<td>3980</td>
<td>5.0</td>
<td>30</td>
<td>2.4</td>
<td>30</td>
</tr>
<tr>
<td>10-080P</td>
<td>6900</td>
<td>7.3</td>
<td>30</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>10-120P</td>
<td>9600</td>
<td>7.3</td>
<td>30</td>
<td>3.8</td>
<td>30</td>
</tr>
<tr>
<td>10-200P</td>
<td>17,500</td>
<td>7.3</td>
<td>30</td>
<td>3.9</td>
<td>30</td>
</tr>
<tr>
<td>10-300P</td>
<td>25,900</td>
<td>7.4</td>
<td>30</td>
<td>3.8</td>
<td>30</td>
</tr>
</tbody>
</table>
Installation

Electrical

1. To gain access to terminal strip it is necessary to remove the actuator cover by loosening the four screws with a hex key, and lifting off cover.

2. Make electrical connections to terminal strip as shown on wiring schematic provided with actuator (per various electrical codes there is a green grounding lug on the actuator exterior). Terminals are suitable for up to #14 AWG wire. All units are completely calibrated prior to shipment, and no internal adjustments should be required.

3. Install 3/4" NPT conduit fitting(s) to actuator base.

 Note: Proper conduit fitting must be used to maintain enclosure rating

 NOTE: We recommend sealing conduit openings on units installed outdoors or exposed to large temperature swings (15ºF or more).

4. Replace actuator cover, and install 4 screws and tighten securely using a hex key. Unit is now ready for operation.

 CAUTION: If mounted unit is installed other than straight up, the actuator should be supported independently to prevent side loading and loosening up of fasteners.
Actuator Mounting Dimensions

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-15</td>
<td>2.76</td>
<td>4.02</td>
<td>M8 X 12 DEEP</td>
<td>M10 X 15 DEEP</td>
<td>2.87</td>
<td>7.87</td>
<td>13.31</td>
<td>2.56</td>
<td>3.07</td>
<td>5.59</td>
<td>9.02</td>
<td>3.43</td>
<td>6.3</td>
<td>7.56</td>
<td>10.24</td>
<td>2.68</td>
<td>2.13</td>
</tr>
<tr>
<td>10-20</td>
<td>2.76</td>
<td>4.02</td>
<td>M8 X 12 DEEP</td>
<td>M10 X 15 DEEP</td>
<td>2.87</td>
<td>7.87</td>
<td>13.31</td>
<td>2.56</td>
<td>3.07</td>
<td>5.59</td>
<td>9.02</td>
<td>3.43</td>
<td>6.3</td>
<td>7.56</td>
<td>10.24</td>
<td>2.68</td>
<td>2.13</td>
</tr>
<tr>
<td>10-30</td>
<td>4.02</td>
<td>4.92</td>
<td>M10 X 15 DEEP</td>
<td>M12 X 18 DEEP</td>
<td>3.23</td>
<td>7.87</td>
<td>14.46</td>
<td>2.56</td>
<td>3.07</td>
<td>6.3</td>
<td>10.2</td>
<td>3.9</td>
<td>7.09</td>
<td>8.7</td>
<td>11.42</td>
<td>2.72</td>
<td>2.56</td>
</tr>
<tr>
<td>10-50</td>
<td>4.02</td>
<td>4.92</td>
<td>M10 X 15 DEEP</td>
<td>M12 X 18 DEEP</td>
<td>3.23</td>
<td>8.7</td>
<td>14.49</td>
<td>2.56</td>
<td>3.07</td>
<td>6.3</td>
<td>10.2</td>
<td>3.9</td>
<td>7.09</td>
<td>8.7</td>
<td>11.42</td>
<td>2.72</td>
<td>2.56</td>
</tr>
<tr>
<td>10-60</td>
<td>4.02</td>
<td>4.92</td>
<td>M10 X 15 DEEP</td>
<td>M12 X 18 DEEP</td>
<td>3.23</td>
<td>8.7</td>
<td>14.49</td>
<td>2.56</td>
<td>3.07</td>
<td>6.3</td>
<td>10.2</td>
<td>3.9</td>
<td>7.09</td>
<td>8.7</td>
<td>11.42</td>
<td>2.72</td>
<td>2.56</td>
</tr>
</tbody>
</table>
Operation

Manual Override Operation
Pull the manual declutch lever towards the handwheel until it remains in position. Rotate the handwheel either clockwise (to close) or counter-clockwise (to open), until the desired position is reached. Manual declutch lever has a lockout provision.

CAUTION: The manual override should only be used when there is no power applied to actuator. When power is restored the actuator will automatically resume normal operation.

Mechanical Travel Stop
Mechanical travel stops are to prevent over travel when using the declutchable manual override. Loosen both lock nuts, and back out both adjustment bolts. Cycle actuator to full close position, then screw in adjustment bolt until it seats. Back adjustment bolt out ½ turn, and tighten lock nut. Same procedure is used for open position.

Do NOT set actuator position switches to drive into the mechanical stops!

Setting Limit Switches

Disconnect power!

Open Travel Limit Switch
Using declutchable manual override, move the valve into a full open position. Then loosen the cam adjustment screw on bottom cam and rotate cam (CCW) into limit switch arm until a click is heard, this designates the switch circuit has opened and defines a full open position. Tighten cam adjustment screw.

Close Travel Limit Switch
Using declutchable manual override, move the valve to a full closed position. Then loosen cam adjustment screw on top cam and rotate cam (CW) into limit switch arm until a click is heard, this designates the switch circuit has opened and defines a full closed position. Tighten cam adjustment screw.

Torque Switch Adjustment
The torque switches are factory adjusted to protect valve and actuator from over torque. Adjustment is not necessary.
Calibration

Outline Diagram

DHC-100 117VAC
DHC-100A 234VAC
DHC-100B 24VAC

ELECTRICAL CONNECTIONS

<table>
<thead>
<tr>
<th>J1</th>
<th>to Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTOR 1 OUTPUT</td>
<td>1 ()</td>
</tr>
<tr>
<td>NEUTRAL</td>
<td>2 ()</td>
</tr>
<tr>
<td>MOTOR 2 OUTPUT</td>
<td>3 ()</td>
</tr>
<tr>
<td>GND</td>
<td>4 ()</td>
</tr>
<tr>
<td>WIPER</td>
<td>5 ()</td>
</tr>
<tr>
<td>+2.5V</td>
<td>6 ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J2</th>
<th>to Feedback Pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 NEUTRAL</td>
<td>1 ()</td>
</tr>
<tr>
<td>L1 LINE</td>
<td>2 ()</td>
</tr>
<tr>
<td>EARTH GND</td>
<td>3 ()</td>
</tr>
<tr>
<td>SIGNAL GND (–)</td>
<td>4 ()</td>
</tr>
<tr>
<td>4-20mA (+)</td>
<td>5 ()</td>
</tr>
<tr>
<td>1-5V, 0-5V, 0-10V (+)</td>
<td>6 ()</td>
</tr>
<tr>
<td>+5V OUT</td>
<td>7 ()</td>
</tr>
<tr>
<td>+15V OUT</td>
<td>8 ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J3</th>
<th>to AC Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2 NEUTRAL</td>
<td>1 ()</td>
</tr>
<tr>
<td>L1 LINE</td>
<td>2 ()</td>
</tr>
<tr>
<td>EARTH GND</td>
<td>3 ()</td>
</tr>
<tr>
<td>SIGNAL GND (–)</td>
<td>4 ()</td>
</tr>
<tr>
<td>4-20mA (+)</td>
<td>5 ()</td>
</tr>
<tr>
<td>1-5V, 0-5V, 0-10V (+)</td>
<td>6 ()</td>
</tr>
<tr>
<td>+5V OUT</td>
<td>7 ()</td>
</tr>
<tr>
<td>+15V OUT</td>
<td>8 ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J7</th>
<th>to Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVERRIDE INPUT</td>
<td>1 ()</td>
</tr>
</tbody>
</table>

FRONT PANEL

1.31”

J1 J2

1.36”

J3

1.36”

FUSE

#6 clear hole (2) places
QuickCal Procedure

The following is a quick calibration procedure. For more details regarding the calibration and features of your DHC-100, please see the pages following this procedure.

General
The MODE button selects a particular function, or mode, and the indicator for the selected mode turns on steady. Pushing the MODE button saves any new setting of the current mode before switching to the next mode. The adjust up (▲) and adjust down (▼) buttons are used to make adjustments to current mode.

1. Apply power to the actuator on Connector J2: terminal #1 (neutral), terminal #2 (line), and terminal #3 (earth). There is no need for a signal connection during calibration.

2. Push the MODE button until the yellow “MANUAL/FB POT CAL” LED is illuminated. The LED may be flashing (at different speeds) through the next several steps. This is expected and will be explained.

3. Use the adjust buttons (▲ and ▼) to move the actuator and verify that the limit switches are set past the desired open and closed positions; then move the actuator to mid stroke.

4. If LED is solid, proceed to step 7.

5. If LED is flashing, loosen the gear on the actuator shaft and rotate the potentiometer gear until the LED is no longer flashing, but on solid - this indicates the center of the potentiometer’s travel. Note that the LED will flash at a slower rate the farther away from the mid position it gets. Once the LED is on solid tighten all gears.

6. Push the MODE button until the “CLOSE” LED is illuminated. Use the adjust buttons (▲ and ▼) to drive the actuator to the desired closed position. Ensure that the close limit switch does not engage.

7. Push the MODE button until the “OPEN” LED is illuminated. Use the adjust buttons (▲ and ▼) to drive the actuator to the desired open position. Ensure that the open limit switch does not engage.

8. Please skip to Aux Open/Close Setup if optional Transmitter with Relays is installed; otherwise continue to the next step.

9. Push the MODE button until the “COMMAND TYPE” LED is illuminated. Use the adjust buttons (▲ and ▼) to select appropriate input signal (4-20mA, 1-5VDC, 0-5VDC, 0-10VDC, or Digital). If 0-5VDC or 0-10VDC is
selected, the LOSS OF COMMAND feature is not available, so proceed to step 12.

10. Push the MODE button until the “LOSS OF COMMAND” LED is illuminated; this sets the actuator to a predetermined position upon loss of command. Use the adjust buttons (▲ and ▼) to select appropriate position (OPEN, CLOSE, or LAST POSITION).

11. Please skip to Aux Position Setup if optional Transmitter, or optional Transmitter with Switches is installed, otherwise continue to the next step.

12. Push the MODE button until the “AUTO” LED is illuminated. Your calibration is now COMPLETE. Connect the command signal wires to connector J2: terminal #4 (signal ground) and terminal #5 (mA input) OR terminal #6 (voltage input), depending on the application. If a signal input was already connected, the actuator should have moved to that position.

Aux Open/Close Option Setup

1. Push the MODE button until the “AUX CLOSE OUTPUT” LED is illuminated. Use the adjust buttons (▲ and ▼) to drive the actuator to the desired auxiliary close position.

2. Push the MODE button until the “AUX OPEN OUTPUT” LED is on. Use the adjust buttons (▲ and ▼) to drive the actuator to the desired auxiliary open position.

3. Continue with Step 9 in the Quick Calibration Procedure (see above).

Aux Position Option Setup

1. Push the MODE button until the red “AUX POSITION OUT CAL” LED illuminates while the “CLOSE” LED flashes. Note that the red LED flashes to indicate a “Fault” and turns on steady to indicate the "AUX POSITION OUT CAL" modes.

2. Use the adjust buttons (▲ and ▼) to set the desired output voltage or current (mA) on the option module output for the closed position.

3. Push the MODE button so the “AUX POSITION OUT CAL” LED remains steady while the “OPEN” LED flashes. Use the adjust buttons (▲ and ▼) to set the desired output voltage or current (mA) on the option module output for the open position.
4. Continue with Step 12 in the **Quick Calibration Procedure** (see above).

Please read the following pages to ensure that ALL of the selectable features are understood and selected if required.

Power / Signal (J2)

Power is connected to pins 1, 2, and 3 as shown in the block diagram. The fuse installed on the unit is rated for maximum output current that can be safely delivered by the AC outputs. Replacement fuses must not exceed the maximum rating to prevent damage to the unit.

An appropriate command signal, either 0-5V, 0-10V, 1-5V, or 4-20mA, should be connected to pin 5 or 6 (as shown in the Block Diagram) while using pin 4 as the return *signal ground*. The DHC-100 must be configured for the type of command signal that is to be used (see COMMAND TYPE).

Pin 7 of J2 provides an auxiliary +5V output which can be used to connect a command potentiometer. By connecting one end of a potentiometer to pin 7, the other end to pin 4, and the wiper to pin 6, a local control knob can be implemented. Pin 8 provides an auxiliary +15VDC output which can be used to power an input or output 4-20mA transmitter.

Actuator (J1)

The actuator motor and feedback potentiometer are connected to J1 as shown in the Block Diagram. The Motor Neutral wire must be connected to pin 2, while one motor winding is connected to pin 1 and the other winding to pin 3. The feedback potentiometer wiper must be connected to pin 5, while one end is connected to pin 4 and the other end to pin 6. The *Polarity Detection* feature of the DHC-100 automatically determines which motor winding to control based on where the *open* and *closed* positions are set; this feature also eliminates the need to rewire the unit for direct or reverse acting applications.

When the ▲ and ▼ buttons are used to control the actuator, the ▲ button will turn on the motor winding connected to pin 1, while the ▼ button will turn on the motor winding connected to pin 3. See MANUAL/FB POT CAL for more details.

Override (J7)

J7 provides a simple 2-wire connection that can override the DHC-100 to perform a variety of external control functions. Using an appropriate interface module, commonly used auto/manual station switches are easily implemented with low
voltage/low current switches. The factory-installed jumper between pins 1 and 2 enables normal operation of the DHC-100 and must be installed if the external override functions are not used.

Mode

The MODE button is used to select the desired function of operation. When the MODE button is pressed, the unit will switch to the next function and the appropriate LED indicator will turn on to let the user know which function is selected. Except for the MANUAL/FB POT CAL mode, the associated mode indicator will be steady on; for some of the modes other indicators will flash to indicate specific settings associated with the mode. Each of the modes are described in more detail in the following sections.

If a 0-5V or 0-10V command signal is used, the LOSS OF COMMAND function cannot be used. The MODE button will skip over the LOSS OF COMMAND mode when the unit is configured for a 0-5V or 0-10V command signal (see COMMAND TYPE). When the OVERRIDE mode is enabled (see OVERRIDE MODE), the MODE button is disabled and the Manual/Pot Cal indicator will turn on steady.

Adjust up and Adjust down

The adjust up ▲ and adjust down ▼ buttons are used to adjust the setting of any given function. When a function is selected by the MODE button, the adjust buttons will affect that function only. Note, that the AUTO mode does not have any adjustable settings, and therefore, the adjust up and adjust down buttons have no effect. Also, the adjust buttons are disabled in the OVERRIDE mode.

Override Mode

The OVERRIDE mode is not selected by the MODE button and can be enabled at anytime by connecting a resistance greater than 250 ohms to the Override Input (J7 pin 1 and pin 2). While the OVERRIDE mode is enabled, the MODE button and adjust buttons are disabled, and the Manual/Pot Cal indicator will turn on steady to indicate that the unit is being controlled by the Override Input. Shorting J7 pin 1 to pin 2 returns the unit to normal operation and the previously selected mode. Note that earlier models may not have connector J7, and therefore do not have the OVERRIDE mode feature.

Controlling the DHC-100 from the Override Input is accomplished by connecting a specific resistance to select a specific operation. The table below defines the operations and their associated resistance.
The OPEN function will operate the motor in the open direction as set by the OPEN mode, while the CLOSE function operates the motor in the closed direction as set by the CLOSE mode. The LATCH function will maintain the previously selected function; this allows momentary switches to be used for the OPEN and CLOSE functions. The OFF and STOP functions turn the motor off, which also unlatches the OPEN or CLOSE functions.

Note that the OPEN and CLOSE functions may work in reverse until the open and closed positions are set by the OPEN and CLOSE modes. The DHC-100 will automatically turn the motor off when the open or closed positions are reached. However, if a feedback fault occurs (see FAULT INDICATOR), the motor will be turned on for a period of 15 minutes in the selected direction. For this reason, limit switches should be used when using the OVERRIDE mode, and should be set to a position acceptable for the application. The 15 minute period can also be terminated using the OFF or STOP function.

The motor is also automatically turned off if the DHC-100 detects a stall (see STALL DETECTION). An OPEN or CLOSE operation can be attempted again after switching to the OFF, LATCH, or STOP functions first.

Auto

The AUTO function is the normal mode of operation for the DHC-100; all the other functions are used to set up the unit. While in AUTO, the unit can be controlled by various external signals, some of which can be selected by the COMMAND INPUT function. When the unit is not in the AUTO mode, all external controls described below will be disabled.

Once the open and closed positions have been set, the AUTO mode will control the position of the actuator according to the command input signal. For an input signal of 0V (for 0-5V or 0-10V input), 1V (for 1-5V input), 4.0 mA (for 4-20mA input), or 0% (for a digital input), the DHC-100 will position the actuator to the closed position as set by the user. Conversely, an input of 10V, 5V, 20mA, or 100% will position the actuator to the defined open position.

When the DHC-100 is configured to use a 0-5V, 0-10V, 1-5V, or 4-20mA command, the command signal should be connected to the appropriate pin on J2 - note that the unused input pin must be left unconnected. When the DHC-100 is configured for a Digital command type, an appropriate communications option module must be installed. A communications module may be installed when using one of the analog command types and can be used to override the analog command with a digital signal.
command. The AUTO indicator will flash whenever the unit is being controlled by the communications module.

Manual/FB Pot Cal

The MANUAL/FB POT CAL function allows manual operation of the actuator by using the adjust buttons (▲ and ▼) without affecting any other settings within the DHC-100. When the ▲ button is pressed, the motor winding connected to J1-1 is turned on while the ▼ button turns on the J1-3 winding. Whether the actuator moves toward the open or closed position depends on which motor winding is connected to J1-1 and J1-3.

The POT CAL feature provides an indication of the feedback potentiometer's setting. When the MANUAL/POT CAL function is selected, the Manual/Pot Cal indicator will turn on - it may flash or be on steady, depending on the actuator position. The indicator will be on steady whenever the DHC-100 detects that the feedback potentiometer is at midrange of its rotation. As the actuator moves, causing the feedback potentiometer to move away from midrange, the indicator will begin to flash, and the indicator will flash at a decreasingly slower rate as the actuator moves further away from midrange.

By using the adjust buttons to position the actuator to midstroke (half way point between the desired open and closed positions), the feedback potentiometer can then be adjusted until a steady light occurs. This insures that the feedback potentiometer has maximum range to reach the open and closed positions.

Close

The CLOSE function is used to set the desired closed position; however, prior to doing this, the feedback potentiometer should be checked for optimum position (see MANUAL/POT CAL), and the limit switches should be set outside of the operating range (see STALL DETECTION FEATURE). In the CLOSE function, the adjust buttons are used to set the actuator to any desired position, and upon pressing the MODE button (to select the next function, OPEN), the DHC-100 will retain the setting as the defined closed position.

Upon selecting the CLOSE function, the DHC-100 will begin moving the actuator to the previously set closed position; it is not necessary to make an adjustment if the unit has been previously set to the desired position. A command signal input of 0V, 1V, 4mA, or 0% automatically corresponds to the defined closed position.

Open

The OPEN function works the same way as the CLOSE function with the exception that the adjust buttons are used to set the desired open position. As
with the CLOSE function, upon selecting the OPEN function, the actuator will move to the previously set open position. Once the desired position is set, the DHC-100 will automatically correspond a command signal input of 10V, 5V, 20mA, or 100% to the open position.

Auxiliary Close Output

The AUX CLOSE OUTPUT function is used to set an optional output setting that is associated with the closed position - an appropriate relay option module is required to use this output. The adjust buttons are used to set the actuator to a desired position. Whenever the actuator position falls between the defined closed position and the Aux Close position, the Aux Close Output indicator will flash. Additionally, the DHC-100 will turn on a relay output on the optional relay module - the output can be used to drive an alarm or merely act as an auxiliary limit switch. Relay is rated for 1 amp @ 24VDC or .5 amp @ 115VAC.

Upon selecting the AUX CLOSE OUTPUT function, the DHC-100 will begin moving the actuator to the previously set position. It is not necessary to make an adjustment if the unit has been previously set to the desired position.

Auxiliary Open Output

The AUX OPEN OUTPUT function is used to set an optional output setting that is associated with the open position - an appropriate relay option module is required to use this output. The adjust buttons are used to set the actuator to a desired position. Whenever the actuator position falls between the defined open position and the Aux Open position, the Aux Open Output indicator will flash. Additionally, the DHC-100 will turn on a relay output on the optional relay module - the output can be used to drive an alarm or merely act as an auxiliary limit switch. Relay is rated for 1 amp @ 24VDC or .5 amp @ 115VAC.

Upon selecting the AUX OPEN OUTPUT function, the DHC-100 will begin moving the actuator to the previously set position. It is not necessary to make an adjustment if the unit has been previously set to the desired position.

Command Type

The COMMAND TYPE function is used to configure the command signal input for either 4-20mA, 1-5V, 0-5V, 0-10V, or digital so as to match the type of command signal being used. Upon selecting the COMMAND TYPE function, the Command Input indicator will turn on steady, while the indicator for the selected type will flash. Use the adjust buttons (▲ and ▼) to select the desired input type. The selection will be saved when the MODE button is pressed, which will also advance the unit to the LOSS OF COMMAND function.
Loss of Command

When using 1-5V, 4-20mA, or a Digital input type for the command signal, the DHC-100 will detect when the command signal is lost or out of range. A loss of command condition is detected whenever the input is disconnected, the input becomes less than 0.75V or 3mA, or the input becomes greater than 5.5V or 22mA. If the DHC-100 detects a loss of the command signal, the Fault indicator will flash and the actuator will be moved to one of three preset positions: the open position, the closed position, or the position last attained prior to losing the command signal. The LOSS OF COMMAND function is used to set the desired default position.

When the LOSS OF COMMAND function is selected, the adjust buttons ▲ and ▼ are used to set the default position. The DHC-100 indicates the selected default setting by flashing the Open function indicator for the open default position, or it will flash the Close function indicator for the closed default position. When neither indicator is on, then the "last position" default is selected.

When a 0-5V or 0-10V command signal is used, a loss of command signal cannot be detected. Therefore, if the unit is configured for a 0-5V or 0-10V command signal (see COMMAND INPUT), the MODE button will not select the LOSS OF COMMAND function.

Auxiliary Position Out Cal

Note that the AUX POSITION OUT CAL indicator also serves as a Fault indicator. When the indicator is on steady, the AUX POSITION OUT CAL function is selected. When the indicator flashes, a Fault condition has been detected (see FAULT INDICATOR for details). The AUX POSITION OUT CAL function is used to calibrate an optional feedback transmitter output. An appropriate transmitter option module is required to use this feature.

When the AUX POSITION OUT CAL function is first selected (by pressing the MODE button while in the LOSS OF COMMAND function), the CLOSE indicator will flash, and the voltage or current associated with the closed position will appear at the option module output. If desired, the output can be adjusted (using the adjust buttons ▲ and ▼) to any value from 0 to 10V (for a voltage output) or 0 to 20mA (for a current output). The new setting is then associated with the closed position.

Pressing the MODE button again will leave the unit in the AUX POSITION OUT CAL function except that the OPEN indicator will flash, and the output voltage or current associated with the open position will appear at the option module output. Like the closed setting, the output can be adjusted to any voltage (from 0 to 10V) or current (from 0 to 20mA), and the new setting is then associated with the open position.
Fault Indicator

The DHC-100 detects various fault conditions that prohibit the unit from controlling the actuator. When any of these conditions are detected, the Fault indicator will flash, and the motor outputs are turned off until all fault conditions have been corrected. If an appropriate relay option module is installed, the Fault relay output on the option module will also turn off. A communications option module can read the specific condition(s) causing the fault. Note that a fault condition DOES NOT disable the motor outputs when manually controlling the actuator with the adjust buttons; while useful for troubleshooting, care should be exercised when operating the motor under a fault condition. The OVERRIDE mode can also operate the motor when a fault condition exists - see OVERRIDE MODE for details. The various fault conditions are described below:

LOSS OF COMMAND - If the command signal is disconnected or out of range, the fault indicator will remain on until the signal is reconnected or back in range.

FEEDBACK POT FAULT - A fault condition is detected whenever the feedback signal is out of range (that is, less than 5% of the potentiometer value or more than 95% of the potentiometer value), or when any of the potentiometer connections are broken. Normal operation resumes when the potentiometer is reconnected or back in range.

MOTOR 1 STALL - A fault condition is detected when no actuator motion is detected while the Motor 1 output is turned on. The fault condition will disable the Motor 1 output only, and the fault is cleared when the DHC-100 detects a motion greater than 1.5° in either direction. The fault can be cleared if 1) the command signal commands a Motor 2 operation, 2) manual operation with the adjust buttons results in a motion greater than 1.5°, or 3) a mechanical manual override forces the 1.5° motion, provided the mechanical motion is monitored by the feedback pot.

MOTOR 2 STALL - A fault is detected when no actuator motion is detected while the Motor 2 output is turned on. The fault can be cleared in the same manner as a Motor 1 Stall (see above).

DOUBLE STALL - If the DHC-100 detects no actuator motion in either direction, both motor outputs will be disabled. The command signal cannot clear this condition; only manual operation or a mechanical override can clear the fault. Alternatively, the DHC-100 can be powered off and then on to temporarily clear the fault; however, this practice should be avoided without permanently correcting the cause of such a fault.
Stall Detection

The Stall Detection feature of the DHC-100 (see FAULT INDICATOR) essentially performs a similar function as commonly used torque switches.

The Stall Detection feature is useful for detecting when any of the motor wires become disconnected. However, limit switches employed in actuators essentially disconnect one of the motor windings. The DHC-100 will detect this as a motor stall. To avoid this condition, the limit switches must be set outside of the operating range set by the CLOSE and OPEN functions.

Electronic Brake

The Electronic Brake feature of the DHC-100 provides highly reliable and accurate braking of the motor, and it is a key element in achieving high resolution. A mechanical brake can still be implemented without interfering with the DHC-100 operation. Mechanical brakes can be useful for providing a holding brake in the event power to the actuator is lost.

Since the Electronic Brake feature provides the primary braking of the motor, the life of a mechanical brake is dramatically extended. Additionally, the Adaptive Control feature of the DHC-100 automatically compensates for changes in a mechanical brake's performance due to temperature or age.

Note that the actuator's limit switches should be set outside of the operating range set by the CLOSE and OPEN functions. The Electronic Brake feature degrades in performance if a limit switch is engaged. Limit switches exhibit wide variations, and the DHC-100 can position the actuator more precisely at closed and open than the limit switches. A limit switch serves better as a fail safe device to protect against electrical failures in the actuator.

Duty Cycle Control

The Duty Cycle Control feature of the DHC-100 allows actuators rated at 25% duty or more to be safely used in automated valve applications. The DHC-100 accurately monitors the relative heating of the motor and automatically duty cycles the unit at a safe level when a process becomes unstable, or if a control loop is not properly set. While the thermal switch in the motor protects the motor from overheating, thermal switches can shutdown the actuator for ten minutes or more.

The Duty Cycle Control feature allows continuous operation of the motor until it detects an excess heat build up in the motor (usually well below the limit of the thermal switch). At that time, duty cycle operation is automatically enabled and continues until the motor cools enough to resume continuous operation. The duty cycle period is approximately 2 seconds with an on time that automatically varies depending on the heating of the motor. While this operation slows down the
actuator’s operation, it does not impact the resolution performance of the DHC-100, and it prevents disruption of a process due to a thermal switch shutdown.

Option Modules

Various option modules can be plugged into the DHC-100 option module connector, J3. Option modules provide additional features such as position feedback signals with auxiliary switch outputs, for example; or digital communications. Contact the factory for the latest available modules. Refer to the diagram below for instructions on installing an option module.
Series 10 Options Codes for Serial # Tags

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>2 extra limit switches</td>
</tr>
<tr>
<td>P</td>
<td>Feedback potentiometer</td>
</tr>
<tr>
<td>HT</td>
<td>Heater and Thermostat</td>
</tr>
<tr>
<td>C1</td>
<td>4-20 mA Positioner</td>
</tr>
<tr>
<td>CLC</td>
<td>Cycle length control</td>
</tr>
<tr>
<td>2WC</td>
<td>2-wire control</td>
</tr>
<tr>
<td>C3</td>
<td>4-20mA Output Transducer</td>
</tr>
</tbody>
</table>

Example 1: 10P-15M2HTPW
Feedback potentiometer installed (M2 & HT are standard).

Example 2: 10P-15M2HTC1W
4-20mA positioner installed (M2 & HT are standard).

Specifications

DHC-100 Spec

POWER REQUIREMENTS
DHC-100: 117VAC ±10%, 50/60 Hz
DHC-100A: 234VAC ±10%, 50/60 Hz
DHC-100B: 24VAC ±10%, 50/60 Hz
12 VA typical (not including output load)
Fuse Type: 5A TR5 Slo-Blo (replaceable)

COMMAND SIGNAL INPUT
Input Impedance
20K ohms (1-5 VDC, 0-5 VDC, 0-10 VDC Input)
251 ohms ±1% (4-20 mA Input)
Loss of Command threshold
< 0.75V or > 5.5V (1-5 VDC input)
< 3mA or > 22mA (4-20mA input)

FEEDBACK SIGNAL INPUT
Input Voltage: 0 to 2.5 VDC
External Feedback Potentiometer: 1K ohm

POWER SUPPLY OUTPUTS
+15V OUT (J2-8): 125mA maximum (not including option module)
+5V OUT (J2-7): 5mA maximum

NOTE: Do not connect these outputs to other power supplies.

AC MOTOR OUTPUTS
- Off-state Leakage Current: <15mA
- Maximum Load Current @ 150°C: 5A

ENVIRONMENTAL
- Operating Temperature Range: 32 °F to 150 °F
- Storage Temperature Range: -40 °F to 185 °F
- Relative Humidity Range: 0 to 90 % (noncondensing)

Series 10P Specs

MOTOR
- Squirrel cage
- Capacitor Run

GEAR TRAIN
- Permanently Lubricated
- Rockwell Hardened

MOUNTING CONFIGURATION
- ISO Bolt circle (F07 – F16)
- ISO Output Drive

MANUAL OVERRIDE
- Fully De-clutchable
- Worm Gear Design
- Lockable

ENCLOSURE
- NEMA Type 4X & 6
- Stainless Steel Trim
- 2 (Two) 3/4” FNPT Conduit Entries

POSITION INDICATION
- Beacon Position Indicator

TEMPERATURE
- 150° F Maximum Ambient Temperature
Troubleshooting

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSES</th>
<th>REMEDIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is no output, but the motor runs</td>
<td>Manual override engaged. Valves stem broken.</td>
<td>When the manual override is engaged, the motor will run, but no output will be observed until the manual override re-engages with the output shaft. When the valve stem is broken, there will not be a change in fluid movement, making it seem as if the actuator has no output.</td>
</tr>
<tr>
<td>No response from Valve/Actuator</td>
<td>No power source to actuator No signal to actuator Power source disconnected Low or wrong power source Mechanical Brake jammed or misaligned</td>
<td>Check for power Check "Fault Indicator" Check for broken wire, loose connection Check for proper voltage Check alignment of brake</td>
</tr>
<tr>
<td>Motor hums and no output is observed</td>
<td>Foreign material caught in valve Capacitor worn</td>
<td>Remove material and inspect valve for damaged and/or worn parts. Replace parts as necessary Replace capacitor</td>
</tr>
<tr>
<td>No response from unit (All lights are off.)</td>
<td>No power Excessive voltage applied to unit Blown or missing fuse</td>
<td>Check power source. Replace unit. Replace with appropriate fuse; see "Specifications" in manual.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSES</td>
<td>REMEDIES</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>No response from unit (MANUAL / FB POT CAL light is on.)</td>
<td>Jumper wire on J7 terminal block is missing.</td>
<td>Install jumper wire on J7 terminal block.</td>
</tr>
<tr>
<td>Actuator rotates backwards.</td>
<td>Actuator or valve is mounted incorrectly on coupling.</td>
<td>Remount actuator as necessary.</td>
</tr>
<tr>
<td></td>
<td>Actuator needs to be reverse acting.</td>
<td>Refer to "Close" and "Open" modes in manual.</td>
</tr>
<tr>
<td>Actuator does not respond to input signal. (FAULT indicator constantly flashes.)</td>
<td>Input signal not connected</td>
<td>Connect input signal and refer to "Loss of Command" in manual.</td>
</tr>
<tr>
<td></td>
<td>Input signal polarity reversed.</td>
<td>Reverse input wires.</td>
</tr>
<tr>
<td></td>
<td>Input signal wired to wrong terminal.</td>
<td>Check input signal wiring; refer to "Power/Signal J2" in manual.</td>
</tr>
<tr>
<td></td>
<td>Feedback potentiometer improperly wired.</td>
<td>Check wiring; refer to "Actuator J1" in manual.</td>
</tr>
<tr>
<td></td>
<td>Defective feedback potentiometer.</td>
<td>Replace feedback potentiometer.</td>
</tr>
<tr>
<td></td>
<td>Defective motor brake (holds motor)</td>
<td>Repair or replace motor brake.</td>
</tr>
<tr>
<td></td>
<td>Defective motor (not turning)</td>
<td>Repair or replace motor.</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>POSSIBLE CAUSES</td>
<td>REMEDIES</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Actuator does not respond to input signal. (FAULT indicator is off.)</td>
<td>Closed and open positions are set to the same position.</td>
<td>Set closed and open settings; refer to "Close" and "Open" modes in manual.</td>
</tr>
<tr>
<td>FAULT indicator flashes after actuator reaches the fully closed or open position.</td>
<td>Closed or open limit switches set inside the operating range.</td>
<td>Adjust limit switch cams; refer to "Close" and "Open" modes in manual.</td>
</tr>
<tr>
<td>Actuator operates erratically. (FAULT indicator flashes erratically.)</td>
<td>AC ripple induced on the command input signal.</td>
<td>Use equipment that isolates AC ripple from the command signal.</td>
</tr>
<tr>
<td></td>
<td>Defective feedback potentiometer</td>
<td>Replace feedback potentiometer.</td>
</tr>
<tr>
<td></td>
<td>Loose feedback potentiometer or loose feedback potentiometer gears</td>
<td>Tighten feedback potentiometer and/or potentiometer gears.</td>
</tr>
<tr>
<td></td>
<td>Sloppy gear tooth engagement</td>
<td>Adjust feedback potentiometer gears for tight engagement.</td>
</tr>
</tbody>
</table>
Maintenance

Disconnect power!

NEVER REMOVE ACTUATOR COVER WHILE CIRCUITS ARE LIVE!

CAUTION: It is imperative for reducing the chance of electrical shock, and to prevent ignition of hazardous atmospheres that you Disconnect power before any maintenance or repairs are performed.

Series 10P actuators are virtually maintenance free. We do however, recommend that periodic checks are made to ensure that all fasteners are tight and properly torqued to extend the life of the actuator and valve.

Series 10P actuators are manufactured with factory lubricated grease in the gear case and gearbox. In most cases, this lubricant should never have to be replenished, however if deemed necessary, we recommend using a moly EP grease.

NOTE: When ordering replacement motor parts and/or options specify model #, serial number, and voltage.

Attachments:
2 drawings: M00EL7299, M00SS5238
SERIES 10 WITH DHC100 120VAC

Output Module

Optional

- GND's cannot be connected together

Factory default position

1. commons
2. aux output
3. aux input
4. control input
5. high alarm
6. low alarm
7. alarm output
8. alarm input
9. control output
10. control input
11. high alarm
12. low alarm
13. aux output
14. aux input
15. commons
16. control output
17. control input
18. high alarm
19. low alarm
20. aux output
21. aux input

2 EXTRA SWITCHES
MAX: 250VAC 16A

J2 TERMINAL

J3 TERMINAL

J4 TERMINAL

J5 TERMINAL

J6 TERMINAL

J7 TERMINAL

REVIEW

DATE

DESCRIPTION

BY

APP'D

A

10/4/13

FIRST ISSUE

JH

KB

10/4/13

V & A

SERIES 10 WITH DHC100 120VAC

MODEL 1299

10/4/13

J. HUGHES

K. BLYSTONE

10/4/13

V & A

ASAHII AMERICA