Type-14 Pneumatic Diaphragm

Standard Features (Sizes 1/2" - 2")
- Rugged solid thermoplastic construction for maximum corrosion resistance
- Uniquely designed body and bonnet together with diaphragms of new sealing designs by the state-of-the-art computer aided analysis for superior sealing
- Weir design for excellent throttling
- NAMUR pad mount for easy installation of solenoid valves
- Full vacuum rated
- Bubble-tight sealing, even in applications such as slurries or those with suspended particles
- Bonnet seals to protect internals from corrosive environments
- Adjustable travel stop to prevent diaphragm from being overtightened
- Bayonet structure to connect compressor and diaphragm for quick maintenance
- Integrally molded bottom stand for simple yet firm panel mounting
- Indicator at the top for valve position
- PVDF gas barrier, which protects EPDM backing cushion from gas permeation, is a standard for all valves with PTFE diaphragm
- Low profile

Options
- Solenoid valves in all electrical type ratings and voltages
- Limit switches for interface with computers and other equipment
- Positioners: 3-15 mA and 4-20 mA inputs for throttling applications
- 4-20 mA output for interface with computers and other equipment
- Manual override for air-to-spring

Specifications
- **Sizes:** 1/2" - 2"
- **Body Materials:** PVC, CPVC, PP and PVDF
- **Bonnet Materials:** PPG
- **End Connectors:** See Valve Materials
- **Diaphragms:** See Valve Materials
- **Actuator Housing:** PPG
- **Type:** Air-to-Air, Air-to-Spring
- **Air Supply:** 60psi (Recommended) 90psi (Maximum)

2" PVDF TYPE-14 AIR-TO-AIR FLANGED DIAPHRAGM VALVE

1" PP TYPE-14 AIR-TO-AIR TRUE UNION DIAPHRAGM VALVE

2" CPVC TYPE-14 AIR-TO-SPRING TRUE UNION DIAPHRAGM VALVE WITH NEMA IV DOUBLE LIMIT SWITCH
Dimensions Type-14 Pneumatic Flanged (Sizes 1/2" – 2") (in.)

<table>
<thead>
<tr>
<th>NOMINAL SIZE</th>
<th>ANSI CLASS 150</th>
<th>TRUE UNION</th>
<th>WT. (LBS)</th>
<th>Cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCHES mm</td>
<td>d</td>
<td>C</td>
<td>D</td>
<td>n</td>
</tr>
<tr>
<td>1/2</td>
<td>0.63</td>
<td>2.38</td>
<td>3.50</td>
<td>4</td>
</tr>
<tr>
<td>3/4</td>
<td>0.79</td>
<td>2.75</td>
<td>3.88</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0.98</td>
<td>3.12</td>
<td>4.25</td>
<td>4</td>
</tr>
<tr>
<td>1-1/4</td>
<td>1.26</td>
<td>3.50</td>
<td>4.62</td>
<td>4</td>
</tr>
<tr>
<td>1-1/2</td>
<td>1.57</td>
<td>3.88</td>
<td>5.00</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2.05</td>
<td>4.75</td>
<td>6.00</td>
<td>4</td>
</tr>
</tbody>
</table>

NOTE:
1. Operating Pressure: 60 psi – 90 psi
2. Double Acting – Valve Open: Port (a) Exhaust Valve Shut: Port (b) Supply
 - Valve Open: Port (b) Supply Valve Shut: Port (a) Exhaust
3. The shape and appearance of the actual assembly may differ slightly in nominal size as compared with this drawing.

Weight/Cv

- Double Acting
- Air To Open
- Air To Shut

FOR ADDITIONAL TRUE UNION VALVE DIMENSIONS, SEE PAGE 92

Pressure Class:
- ANSI CLASS 150

Diaphragm Type:
- Type-14 Pneumatic

Pressure Rating:
- 60 psi – 90 psi

Pressure Range:
- Double Acting

Face of Air Supply:
- G 1/4 (a) Exhaust
- G 1/4 (b) Supply

Port (b) Exhaust:
- G 1/4 (b) Supply

Port (a) Supply:
- G 1/4 (a) Exhaust

Port (a) Supply:
- G 1/4 (a) Exhaust

Port (b) Exhaust:
- G 1/4 (b) Supply

Port (b) Exhaust:
- G 1/4 (b) Supply

Air To Open:
- Valve Open: Port (b) Supply
- Valve Shut: Port (a) Exhaust

Air To Shut:
- Valve Open: Port (a) Exhaust
- Valve Shut: Port (a) Supply

Dimensions:
- Flanged (Sizes 1/2" – 2")

Insert Metal Fittings:
- 2-M5 Taps

Depth:
- Depth 0.28

Weight:
- 4.80 lb

Cv:
- 4.8
Type-14 Pneumatic

Diaphragm Valves

Parts Type-14 Pneumatic (1/2" – 2")

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>PCS</th>
<th>MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Body</td>
<td>1</td>
<td>PVC, CPVC, PP, PVDF</td>
</tr>
<tr>
<td>3</td>
<td>Diaphragm</td>
<td>1</td>
<td>EPDM, PTFE, Others</td>
</tr>
<tr>
<td>3a</td>
<td>Diaphragm Metal Insert</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>4</td>
<td>Cushion*</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>5</td>
<td>PVDF Gas Barrier**</td>
<td>1</td>
<td>PVDF</td>
</tr>
<tr>
<td>6</td>
<td>Compressor</td>
<td>1</td>
<td>PVDF</td>
</tr>
<tr>
<td>7</td>
<td>Joint</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>11</td>
<td>Gauge Cover</td>
<td>1</td>
<td>PC</td>
</tr>
<tr>
<td>14</td>
<td>O-Ring (A)</td>
<td>1</td>
<td>EPDM</td>
</tr>
<tr>
<td>21</td>
<td>Screw</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>31</td>
<td>Stem (A)</td>
<td>1</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>32</td>
<td>Stem (B)</td>
<td>1</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>33</td>
<td>Compressor Push Plate</td>
<td>1</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>34</td>
<td>Cylinder Body</td>
<td>1</td>
<td>PPG</td>
</tr>
<tr>
<td>34a</td>
<td>Metal Insert for Above</td>
<td>1</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>35</td>
<td>Cylinder Bonnet</td>
<td>1</td>
<td>PPG</td>
</tr>
<tr>
<td>35a</td>
<td>Metal Insert for Above</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>35b</td>
<td>Metal Insert for Above</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>35c</td>
<td>Threaded Insert for #35</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>36</td>
<td>Cylinder Diaphragm</td>
<td>1</td>
<td>NBR</td>
</tr>
<tr>
<td>37</td>
<td>Cylinder Diaphragm Plate</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>38</td>
<td>Conical Spring Washer (B)</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>39</td>
<td>Bolt (A)</td>
<td>8</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>40</td>
<td>Bolt (B)</td>
<td>4</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>41</td>
<td>Indicating Rod</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>43</td>
<td>Stopper</td>
<td>1</td>
<td>Stainless Steel 304</td>
</tr>
<tr>
<td>44</td>
<td>O-Ring (D)</td>
<td>1</td>
<td>NBR</td>
</tr>
<tr>
<td>45</td>
<td>O-Ring (E)</td>
<td>1</td>
<td>NBR</td>
</tr>
<tr>
<td>46</td>
<td>O-Ring (F)</td>
<td>1</td>
<td>NBR</td>
</tr>
<tr>
<td>47</td>
<td>Nipple</td>
<td>1</td>
<td>Copper Alloy</td>
</tr>
<tr>
<td>48</td>
<td>Spring (A)</td>
<td>1</td>
<td>Spring Steel</td>
</tr>
<tr>
<td>49</td>
<td>Spring (B)</td>
<td>1</td>
<td>Spring Steel</td>
</tr>
<tr>
<td>50</td>
<td>Spring (C)</td>
<td>1</td>
<td>Spring Steel</td>
</tr>
</tbody>
</table>

* Used for PTFE diaphragm.
** Used for PTFE diaphragm.

Troubleshooting

What if valve does not open or close?

1. Air pressure is too low. Adjust the pressure.
2. Power source of solenoid valve is off. Check the connection.
3. Solenoid wiring is disconnected. Connect.
4. Solenoid voltage is low or incorrect. Check voltage with tester and reset.

What if fluid flows even when closed?

1. Operating pressure is too low (air-to-air only). Adjust. Air not exhausted (air-to-spring only). Exhaust air.
2. Diaphragm is damaged or worn. Replace.
3. Body may be damaged. Inspect and replace.
4. Foreign material is caught between weir and diaphragm. Disassemble and clean.

What if valve leaks to atmosphere?

1. Bolts for body and actuator improperly tightened. Tighten as specified in Operation and Maintenance manual.
2. True union style: [a] union nut(s) not tightened properly. Tighten; (b) O-ring between end connector and body is damaged. Replace.

Valve cannot be opened or closed, even though actuator works.

1. Diaphragm is damaged or its compressor joint is broken. Replace part(s).

Sample Specification

All Type-14 actuated diaphragm valves shall be of solid thermoplastic construction for body (molded flanged or true union socket, threaded or butt end connectors) and bonnet with the actuator housing of glass-filled polypropylene. The actuator shall come standard with an “at a glance” position indicator and pad mount according to NAMUR for solenoid mounting. Air supply shall be 60-90psi. The valve body shall have a panel mount feature for support. Actuator to body mount shall be of square design, diaphragm shall be bayonet type connection. Face-to-face dimensions of flanged version shall conform to Type-G. PVC conforming to ASTM D1784 Cell Classification 12454A, CPVC conforming to ASTM D1784 Cell Classification 23567A, PP conforming to ASTM D4101 Cell Classification PP0110M20A21130, and PVDF conforming to ASTM D3222 Cell Classification Type II. PVC, CPVC, PP and PVDF shall be rated to 150psi for elastomeric and PTFE diaphragms at 70°F, as manufactured by Asahi/America, Inc.